Physically Motivated Simulation of Dynamic Hydraulic Seals

Author:

Angerhausen Julian1,Murrenhoff Hubertus1,Persson Bo N. J.2,Schmitz Katharina1

Affiliation:

1. RWTH Aachen University, Aachen, Germany

2. Peter Grünberg Institut, Jülich, Germany

Abstract

Abstract Seals are crucial machine elements, for example in hydraulic cylinders. However, especially in regard to dynamic seals, the theoretical understanding of the sealing mechanism is still insufficient. A physically motivated simulation can help to gain a more detailed understanding. In this contribution a elastohydrodynamic (EHD) seal simulation is presented. It is directly implemented in the commercial Software ABAQUS. The fluid film is considered by implementing the Reynolds equation. For a physically motivated simulation Persson’s theory of contact mechanics and rubber friction is used to calculate the solid contribution to the total friction of a hydraulic seal. Simulations for an oscillating motion of a cylinder rod, sealed by an O-ring seal, are carried out for different velocities and pressures. A qualitative comparison between measurement and simulation is provided. Hysteresis effects and the contributions from both, adhesive and viscoelastic friction to the total solid friction are investigated. The physical origin of these effects is discussed in order to provide a detailed understanding of the dynamic sealing mechanism.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3