Transforming Optimal Tetrahelices Between the Boerdijk–Coxeter Helix and a Planar-Faced Tetrahelix

Author:

Read Robert L.1

Affiliation:

1. Public Invention, 1709 Norris, Dr., Austin, TX 78704 e-mail:

Abstract

The Boerdijk–Coxeter helix (BC helix, or tetrahelix) is a face-to-face stack of regular tetrahedra forming a helical column. Treating the edges of these tetrahedra as structural members creates an attractive and inherently rigid space frame, and therefore is interesting to architects, mechanical engineers, and roboticists. A formula is developed that matches the visually apparent helices forming the outer rails of the BC helix. This formula is generalized to a formula convenient to designers. Formulae for computing the parameters that give proven edge-length minimax-optimal tetrahelices are given, allowing transformation through a continuum of optimum tetrahelices of varying curvature while maximizing regularity. The endpoints of this continuum are the BC helix and a structure of zero curvature, the equitetrabeam. Only one out of three members in the system change their length to transform the structure into any point in the continuum. Numerically finding the rail angle from the equation for pitch allows optimal tetrahelices of any pitch to be designed. An interactive tool for such design and experimentation is provided. A formula for the inradius of optimal tetrahelices is given. The continuum allows a regular Tetrobot supporting a length change of less than 16% in the BC configuration to untwist into a hexapodal or n-podal robot to use standard gaits.

Publisher

ASME International

Subject

Mechanical Engineering

Reference18 articles.

1. The Simplicial Helix and the Equation Tan(n θ) = n Tan(θ);Canad. Math. Bull.,1985

2. Gluss = Slug + Truss,2016

3. Spherical Joint for Coupling Three or More Links Together at One Point,2003

4. Hamlin, G. J., and Sanderson, A. C., 1994, “A Novel Concentric Multilink Spherical Joint With Parallel Robotics Applications,” IEEEInternational Conference on Robotics and Automation, San Diego, CA, May 8–13, pp. 1267–1272.10.1109/ROBOT.1994.351313

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3