Comparative Spray Atomization and Evaporation Characteristics of Dimethyl Ether and Mineral Diesel

Author:

Sonawane Utkarsha1,Agarwal Avinash Kumar1

Affiliation:

1. Indian Institute of Technology Kanpur Engine Research Laboratory, Department of Mechanical Engineering, , Kanpur 208016 , India

Abstract

Abstract Dimethyl ether is a new-generation alternative fuel to mitigate cold-start issues in compression ignition engines. It has a higher cetane number and offers superior spray atomization and fuel evaporation characteristics. This simulation study compares dimethyl ether and baseline diesel sprays and their evaporation characteristics in a constant volume spray chamber. Fuel properties greatly influence spray atomization and evaporation characteristics. This study is based on the Eulerian–Lagrangian approach adopted in the Reynolds-averaged Navier–Stokes framework. The liquid spray penetration obtained by simulation matched well with the experimental results of dimethyl ether and baseline diesel. Spray model constants were tuned for diesel and dimethyl ether separately, as the fuel properties of both test fuels are completely different. These tuned models were used to simulate dimethyl ether and diesel sprays at fixed fuel injection timings and ambient conditions. Results showed a lower spray penetration length for dimethyl ether than baseline diesel because of the flash boiling of dimethyl ether. Smaller diameter droplets formed due to dimethyl ether’s lower viscosity, density, surface tension, and higher evaporation rate. The reduction in Sauter mean diameter was quite sharp after the start of injection for the dimethyl ether. Diesel spray showed retarded spray atomization and evaporation characteristics compared to dimethyl ether. The vapor penetration length of both fuels was almost the same; however, the vapor mass fraction was higher for dimethyl ether than baseline diesel. Dimethyl ether spray exhibited superior spray atomization and improved evaporation of fuel droplets.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3