Affiliation:
1. Department of Mechanical Engineering, School of Physical Sciences and Engineering, King’s College London, Strand, London, WC2R 2LS, UK
Abstract
This paper investigates the vibratory bowl feeder for automatic assembly, presents a geometric model of the feeder, and develops force analysis, leading to dynamical modeling of the vibratory feeder. Based on the leaf-spring modeling of the three legs of the symmetrically arranged bowl of the feeder, and equating the vibratory feeder to a three-legged parallel mechanism, the paper reveals the geometric property of the feeder. The effects of the leaf-spring legs are transformed to forces and moments acting on the base and bowl of the feeder. Resultant forces are obtained based upon the coordinate transformation, and the moment analysis is produced based upon the orthogonality of the orientation matrix. This reveals the characteristics of the feeder, that the resultant force is along the z-axis and the resultant moment is about the z direction and further generates the closed-form motion equation. The analysis presents a dynamic model that integrates the angular displacement of the bowl with the displacement of the leaf-spring legs. Both Newtonian and Lagrangian approaches are used to verify the model, and an industrial case-based simulation is used to demonstrate the results.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献