Hybrid Nodal Integral/Finite Element Method for Time-Dependent Convection Diffusion Equation

Author:

Namala Sundar1,Uddin Rizwan1

Affiliation:

1. Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801

Abstract

Abstract Nodal integral methods (NIM) are a class of efficient coarse mesh methods that use transverse averaging to reduce the governing partial differential equation(s) (PDE) into a set of ordinary differential equations (ODE). These ODEs or their approximations are analytically solved. These analytical solutions are used to then develop the numerical scheme. Transverse averaging is an essential step in the development of NIM, and hence the standard application of this approach gets restricted to domains that have boundaries parallel to one of the coordinate axes (in 2D) or coordinate planes (in 3D). The hybrid nodal-integral/finite element method (NI-FEM) reported here has been developed to extend the application of NIM to arbitrary domains. NI-FEM is based on the idea that the interior region and the regions with boundaries parallel to the coordinate axes (2D) or coordinate planes (3D) can be solved using NIM, and the rest of the domain can be discretized and solved using FEM. The crux of the hybrid NI-FEM is in developing interfacial conditions at the common interfaces between the NIM regions and FEM regions. Since the discrete variables in the two numerical approaches are different, this requires special treatment of the discrete quantities on the interface between the two different types of discretized elements. We here report the development of hybrid NI-FEM for the time-dependent convection-diffusion equation (CDE) in arbitrary domains. The resulting hybrid numerical scheme is implemented in a parallel framework in fortran and solved using portable, extensible toolkit for scientific computation (PETSc). The preliminary approach to domain decomposition is also discussed. Numerical solutions are compared with exact solutions, and the scheme is shown to be second-order accurate in both space and time. The order of approximations used for the development of the scheme is also shown to be second order. The hybrid method is more efficient compared to standalone conventional numerical schemes like FEM.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Reference17 articles.

1. Laminar Natural Convection Heat Transfer From Vertical 7 × 7 Rod Bundles in Liquid Sodium;ASME J. Nucl. Eng. Radiat. Sci.,2019

2. About the Thermal Hydraulic Analysis Part of a Coupled Study on a Thorium-Fueled SCWR Concept;ASME J. Nucl. Eng. Radiat. Sci.,2020

3. General Nodal Expansion Method for Multi-Dimensional Steady and Transient Convection–Diffusion Equation;Ann. Nucl. Energy,2016

4. A Second-Order Space and Time Nodal Method for the One-Dimensional Convection-Diffusion Equation;Comput. Fluids,1997

5. A Modified Nodal Scheme for the Time-Dependent, Incompressible Navier–Stokes Equations;J. Comput. Phys.,2003

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3