Growth Dynamics During Dropwise Condensation on Nanostructured Superhydrophobic Surfaces

Author:

Miljkovic Nenad1,Enright Ryan12,Wang Evelyn N.1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

2. University of Limerick, Limerick, Ireland

Abstract

Condensation on superhydrophobic nanostructured surfaces offers new opportunities for enhanced energy conversion, efficient water harvesting, and high performance thermal management. Such surfaces are designed to be Cassie stable, which minimize contact line pinning and allow for passive shedding of condensed water droplets at sizes smaller than the capillary length. In this work, we investigated in situ water condensation on superhydrophobic nanostructured surfaces using environmental scanning electron microscopy (ESEM). The “Cassie stable” surfaces consisted of silane coated silicon nanopillars with diameters of 300 nm, heights of 6.1 μm, and spacings of 2 μm, but allowed droplets of distinct suspended (S) and partially wetting (PW) morphologies to coexist. With these experiments combined with thermal modeling of droplet behavior, the importance of initial growth rates and droplet morphology on heat transfer is elucidated. The effect of wetting morphology on heat transfer enhancement is highlighted with observed 6× higher initial growth rate of PW droplets compared to S droplets. Consequently, the heat transfer of the PW droplet is 4–6× higher than that of the S droplet. To compare the heat transfer enhancement, PW and S droplet heat transfer rates are compared to that of a flat superhydrophobic silane coated surface, showing a 56% enhancement for the PW morphology, and 71% degradation for the S morphology. This study provides insight into importance of local wetting morphology on droplet growth rate during superhydrophobic condensation, as well as the importance of designing CB stable surfaces with PW droplet morphologies to achieve enhanced heat transfer during dropwise condensation.

Publisher

American Society of Mechanical Engineers

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3