Analytical Formulation of Distributed Buoyancy Sections to Control Lateral Buckling of Subsea Pipelines

Author:

Antunes Bruno Reis1,Solano Rafael Familiar1,Vaz Murilo Augusto2

Affiliation:

1. Petrobras, Rio de Janeiro, Brazil

2. UFRJ/COPPE, Rio de Janeiro, Brazil

Abstract

Subsea pipelines designed to operate under high pressure and high temperature (HP/HT) conditions tend to relieve their axial stress by forming buckles. Uncontrolled buckles can cause pipeline failure due to collapse, low cycle fatigue or fracture at girth welds. In order to control the lateral buckling phenomenon, a methodology was recently developed which consists of ensuring regular buckle formation along the pipeline. Distributed buoyancy is one of the most reliable initiation techniques utilized for this purpose which have been recently applied in some projects. The behavior of pipeline sections with distributed buoyancy is normally evaluated by Finite Element Analyses (FEA) even during preliminary design when analytical models could be adopted. FEA are also utilized in order to support reliability calculations applied within buckle formation problems. However, the referred analyses are usually time-consuming and require some experience to provide good results. This paper presents an analytical formulation for a pipeline section with distributed buoyancy, which can be utilized during preliminary design in order to evaluate the influence of buoyancy sections over buckle shape, feed-in length, tolerable Virtual Anchor Spacing (VAS), etc. Regarding buckle formation, this paper also presents a methodology to determine an expression for the critical buckling force to be used as part of the limit state function in reliability analyses, which combines the results obtained from the referred analytical formulation with Hobbs infinite mode.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3