Validation of a Numerical Model of Skeletal Muscle Compression With MR Tagging: A Contribution to Pressure Ulcer Research

Author:

Ceelen K. K.1,Stekelenburg A.1,Mulders J. L. J.1,Strijkers G. J.1,Baaijens F. P. T.1,Nicolay K.1,Oomens C. W. J.1

Affiliation:

1. Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

Sustained tissue compression can lead to pressure ulcers, which can either start superficially or within deeper tissue layers. The latter type includes deep tissue injury, starting in skeletal muscle underneath an intact skin. Since the underlying damage mechanisms are poorly understood, prevention and early detection are difficult. Recent in vitro studies and in vivo animal studies have suggested that tissue deformation per se can lead to damage. In order to conclusively couple damage to deformation, experiments are required in which internal tissue deformation and damage are both known. Magnetic resonance (MR) tagging and T2-weighted MR imaging can be used to measure tissue deformation and damage, respectively, but they cannot be combined in a protocol for measuring damage after prolonged loading. Therefore, a dedicated finite element model was developed to calculate strains in damage experiments. In the present study, this model, which describes the compression of rat skeletal muscles, was validated with MR tagging. Displacements from both the tagging experiments and the model were interpolated on a grid and subsequently processed to obtain maximum shear strains. A correlation analysis revealed a linear correlation between experimental and numerical strains. It was further found that the accuracy of the numerical prediction decreased for increasing strains, but the positive predictive value remained reasonable. It was concluded that the model was suitable for calculating strains in skeletal muscle tissues in which damage is measured due to compression.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3