Nonlinear Static and Dynamic Responses of a Floating Rod Pendulum

Author:

Al-Solihat Mohammed Khair1

Affiliation:

1. Mechanical Engineering Department, King Fahd University of Petroleum and Minerals , Dhahran 31261, Saudi Arabia

Abstract

Abstract A novel nonlinear dynamics model is developed in this paper to describe the static and dynamic nonlinear behaviors of a rod pendulum partially immersed in still water. The pendulum is hinged above the water level (WL) and subject to nonlinear gravity, hydrostatic, and hydrodynamic loads, all of which are incorporated into the system dynamics. The nonlinear static behavior and stability of the pendulum have been characterized by analyzing the fixed points. It is found that Pitchfork bifurcation governs the relationship between the rod density (the control parameter) and the static equilibrium angle. The pendulum's nonlinear response to external harmonic torque is obtained using harmonic balance method (HBM). The influence of system parameters, including hinge height, rod diameter, and rod density, on the nonlinear frequency response is examined. Upon altering the system parameters, particularly the rod density, it is found that the system exhibits either a softening or a hardening effect.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3