Trajectory Planning Software for Deep Brain Stimulation Driven by Patient-Specific Data

Author:

Marusich Kathryn R.1,Harel Noam2,Johnson Matthew D.3,Rothweiler Paul4,Erdman Arthur G.5

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota-Twin Cities , 736 Serra St SE, 217A, Stanford, CA 94305

2. Department of Radiology, University of Minnesota-Twin Cities, Center for Magnetic Resonance Research , 1-211D 2021 6th Street SE, Minneapolis, MN 55455

3. Department of Biomedical Engineering, University of Minnesota-Twin Cities , Nils Hasselmo Hall, Room 6-134 312 Church Street SE, Minneapolis, MN 55455

4. Earl E. Bakken Medical Devices Center, University of Minnesota-Twin Cities , Mayo Building G217, 420 Delaware Street SE, Minneapolis, MN 55455

5. Department of Mechanical Engineering, University of Minnesota-Twin Cities , Mechanical Engineering Room 317 111 Church Street SE, Minneapolis, MN 55455

Abstract

Abstract Deep brain stimulation (DBS) is a treatment for several neurological disorders including Parkinson's disease, essential tremor, and epilepsy. The neurosurgical procedure involves implanting a lead of electrodes to a deep brain target and thereafter electrically stimulating that target to suppress symptoms. To reduce the probability of intracranial bleeding during implantation, neurosurgeons carefully plan out a patient-specific lead trajectory that avoids passing the lead through regions with major blood vessels. This process can be tedious, and there is a need to provide neurosurgeons with a more efficient and quantitative means to identify major blood vessels on a patient-specific basis. Here, we developed a modular graphical user interface (GUI) containing anatomically segmented digital reconstructions of patient vasculature, cortex, and deep brain target anatomy from preoperative high-field (3T and 7T) MRI. The system prompts users to identify the deep brain target, and then algorithmically calculates a log-scale blood vessel density along the length of potential lead trajectories that pivot around the deep brain target. Heatmaps highlighting regions with low blood vessel density were calculated for cortical and subcortical vasculature models. The modeling framework enabled users to further interact with the models by panning, rotating, zooming, showing, or hiding the various anatomical reconstructions and heatmaps. Providing surgeons with quantitative, patient specific vasculature data has the potential to further reduce the likelihood of hemorrhage events during microelectrode mapping and DBS lead implantation.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3