Conceptual Design and Energy Storage Positioning Aspects for a Hybrid-Electric Light Aircraft

Author:

Gkoutzamanis Vasilis G.1,Kavvalos Mavroudis D.2,Srinivas Arjun1,Mavroudi Doukaini1,Korbetis George3,Kyprianidis Konstantinos G.2,Kalfas Anestis I.1

Affiliation:

1. Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece

2. Future Energy Center, Mälardalen University, Västerås SE-72123, Sweden

3. BETA CAE SYSTEMS SA, Kato Scholari, Thessaloniki GR-57500, Greece

Abstract

Abstract This work is a feasibility study of a 19-passenger hybrid-electric aircraft, to serve the short-haul segment within the 200–600 nautical miles. Its ambition is to answer some dominating research questions, during the evaluation and design of aircraft based on alternative propulsion architectures. The potential entry into service (EIS) is foreseen beyond 2030. A literature review is performed to identify similar concepts under research and development. After the requirements' definition, the first level of conceptual design is employed. The objective of design selections is driven by the need to reduce CO2 emissions and accommodate aircraft electrification with boundary layer ingestion engines. Based on a set of assumptions, a methodology for the sizing of the hybrid-electric aircraft is described to explore the basis of the design space, incorporating a parametric analysis for the consideration of boundary layer ingestion effects. Additionally, a methodology for the energy storage positioning is provided to highlight the multidisciplinary aspects between the sizing of an aircraft, the selected architecture (series/parallel partial hybrid), and the storage characteristics. The results show that it is not possible to fulfill the initial design requirements (600 nmi) with a fully-electric aircraft configuration, due to the far-fetched battery necessities. It is also highlighted that compliance with airworthiness standards is favored by switching to hybrid-electric aircraft configurations and relaxing the design requirements (targeted range, payload, battery technology). Finally, the lower degree of hybridization (40%) is observed to have a higher energy efficiency (−12% energy consumption) compared to the higher degree of hybridization (50%) and greater CO2 reduction, with respect to the conventional configuration.

Funder

European Commission

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference67 articles.

1. Working Towards Ambitious Targets;IATA,2019

2. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets,2014

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3