Effects of Substrate Bias on Tribological Properties of Diamondlike Carbon Thin Films Deposited Via Microwave-Excited Plasma-Enhanced Chemical Vapor Deposition

Author:

Win Khun Nay1,Neville Anne2,Kolev Ivan3,Zhao Hongyuan4

Affiliation:

1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

2. School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK e-mail:

3. IHI Hauzer Techno Coating, Venlo 5928 LL, The Netherlands

4. School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK

Abstract

In this study, the structure and tribological performance of the diamondlike carbon (DLC) films were related to deposition parameters. The feasibility of the microwave-excited plasma-enhanced chemical vapor deposition (μW-PECVD) as a process to produce good quality DLC films was the focus. The DLC films were deposited on the steel substrates with a tungsten carbide interlayer via μW-PECVD. The negative substrate bias used during the film deposition was varied. The Raman results revealed that the increased negative substrate bias increased the sp3 bonding in the DLC films as a result of the increased kinetic energy of film-forming ions during the film deposition. The tribological results clearly indicated that the friction and wear of the DLC-coated steel samples against a 100Cr6 steel ball significantly decreased with increased negative substrate bias due to the significantly improved wear resistance of the DLC films.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3