Damage Tolerance of Well-Completion and Stimulation Techniques in Coalbed Methane Reservoirs

Author:

Jahediesfanjani Hossein1,Civan Faruk1

Affiliation:

1. Mewbourne School of Petroleum and Geological Engineering, the University of Oklahoma, Norman, Oklahoma, 73019 USA

Abstract

Coalbed methane (CBM) reservoirs are characterized as naturally fractured, dual porosity, low permeability, and water saturated gas reservoirs. Initially, the gas, water, and coal are at thermodynamic equilibrium under prevailing reservoir conditions. Dewatering is essential to promote gas production. This can be accomplished by suitable completion and stimulation techniques. This paper investigates the efficiency and performance of the openhole cavity, hydraulic fractures, frack and packs, and horizontal wells as potential completion methods which may reduce formation damage and increase the productivity in coalbed methane reservoirs. Considering the dual porosity nature of CBM reservoirs, numerical simulations have been carried out to determine the formation damage tolerance of each completion and stimulation approach. A new comparison parameter, named as the normalized productivity index Jnp(t) is defined as the ratio of the productivity index of a stimulated well to that of a nondamaged vertical well as a function of time. Typical scenarios have been considered to evaluate the CBM properties, including reservoir heterogeneity, anisotropy, and formation damage, for their effects on Jnp(t) over the production time. The results for each stimulation technique show that the value of Jnp(t) declines over the time of production with a rate which depends upon the applied technique and the prevailing reservoir conditions. The results also show that horizontal wells have the best performance if drilled orthogonal to the butt cleats. Long horizontal fractures improve reservoir productivity more than short vertical ones. Open-hole cavity completions outperform vertical fractures if the fracture conductivity is reduced by any damage process. When vertical permeability is much lower than horizontal permeability, production of vertical wells will improve while productivity of horizontal wells will decrease. Finally, pressure distribution of the reservoir under each scenario is strongly dependent upon the reservoir characteristics, including the hydraulic diffusivity of methane, and the porosity and permeability distributions in the reservoir.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference39 articles.

1. Coalbed Methane Reservoir of the United States;Rightmire

2. Simulation and Economics of Coalbed Methane Production in the Powder River Basin;Reid

3. The Unsteady-State Nature of Sorption and Diffusion Phenomena in the Micropore Structure of Coal;Kolesar

4. A Comparative Analysis opf the Production Characteristics of Cavity Completions and Hydraulic Fractures in Coalbed Methane reservoirs;Goktas

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3