Rigid Body Dynamics, Constraints, and Inverses

Author:

Hemami Hooshang1,Wyman Bostwick F.2

Affiliation:

1. Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210

2. Department of Mathematics, The Ohio State University, Columbus, OH 43210

Abstract

Rigid body dynamics are traditionally formulated by Lagrangian or Newton-Euler methods. A particular state space form using Euler angles and angular velocities expressed in the body coordinate system is employed here to address constrained rigid body dynamics. We study gliding and rolling, and we develop inverse systems for estimation of internal and contact forces of constraint. A primitive approximation of biped locomotion serves as a motivation for this work. A class of constraints is formulated in this state space. Rolling and gliding are common in contact sports, in interaction of humans and robots with their environment where one surface makes contact with another surface, and at skeletal joints in living systems. This formulation of constraints is important for control purposes. The estimation of applied and constraint forces and torques at the joints of natural and robotic systems is a challenge. Direct and indirect measurement methods involving a combination of kinematic data and computation are discussed. The basic methodology is developed for one single rigid body for simplicity, brevity, and precision. Computer simulations are presented to demonstrate the feasibility and effectiveness of the approaches presented. The methodology can be applied to a multilink model of bipedal systems where natural and/or artificial connectors and actuators are modeled. Estimation of the forces is accomplished by the inverse of the nonlinear plant designed by using a robust high gain feedback system. The inverse is shown to be stable, and bounds on the tracking error are developed. Lyapunov stability methods are used to establish global stability of the inverse system.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3