Synchronization of Vortex Shedding and Heat Transfer Enhancement Over a Heated Cylinder Oscillating With Small Amplitude in Streamwise Direction

Author:

Gau C.1,Wu S. X.1,Su H. S.1

Affiliation:

1. Institute of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, R.O.C

Abstract

Experiments are performed to study the flow structure and heat transfer over a heated cylinder oscillating radially with small amplitude in streamwise direction. Both flow visualization using a smoke wire in the upstream and the local heat transfer measurements based on wall temperatures around the cylinder were made. The excitation frequencies of the cylinder are selected at Fe/Fn=0, 0.5, 1, 1.5, 2, 2.5, and 3. The oscillation amplitude selected is less than a threshold value of A/D=0.06 where synchronization of vortex shedding with the cylinder excitation was not expected. However, experiments indicate that synchronization still occurs which stimulates a great interest to study its enhancement in the heat transfer. Synchronization occurred at Fe/Fn=2 is antisymmetric vortex formation while synchronization at Fe/Fn=2.5 and 3 is symmetric type. The forward motion (advancing into the cross flow) of the cylinder during one cycle of oscillation has an effect to suppress the instability and the vortex formation. This leads to the occurrence of a smaller and symmetric vortex formation and a less enhancement of heat transfer than the case of antisymmetric type Fe/Fn=2. For excitations at lower frequencies Fe/Fn⩽1.5, all the vortex formations occurred are mostly antisymmetric. The dominant mode of the instability in the shear layer is actually the natural shedding frequency Fn of the vortex. A closer excitation frequency to 2Fn causes a greater enhancement in the heat transfer. During the experiments, the Reynolds numbers varies from 1600 to 3200, the dimensionless amplitude A/D from 0.048 to 0.016.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3