Influence of Guide Ring on Energy Loss in a Multistage Centrifugal Pump

Author:

Yun Ren1,Zuchao Zhu2,Denghao Wu3,Xiaojun Li2

Affiliation:

1. Zhijiang College, Zhejiang University of Technology, Shaoxing 312030, China; Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China e-mail:

2. Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China e-mail:

3. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China e-mail:

Abstract

Multistage centrifugal pumps are highly efficient and compact in structure. Pump efficiency can be improved by an effective understanding of hydraulic behavior and energy loss, however, the traditional hydraulic loss evaluation method does not readily reveal the specific locations of energy loss in the pump. In this study, a guide ring was imposed in multistage pumps, and an entropy production theory was applied to investigate irreversible energy loss of a multistage pump with and without guide ring. Detailed distributions of energy losses in the pumps were calculated to determine the respective entropy production rates (EPRs). The EPR values as calculated are in close accordance with actual hydraulic loss values in the pumps. EPR values were higher in the multistage pump with the guide ring than the pump without a guide ring under part-load flow conditions (0.2Qd). However, the vortex flow in the pump was weakened (or eliminated) by the guide ring as flow rate increased; this reduced energy loss in the chambers. Flow passing the chamber was stabilized by the guide ring, which decreased shock and vortex loss in the chamber and guide vane. Under both designed flow condition and overload conditions, the EPR values of the guide ring-equipped multistage pump were lower than those without the guide ring. Furthermore, minimum efficiency index (MEI) values were also calculated for the two chamber structures; it was found that overall efficiency of pump with guide ring is better than that without.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3