3D Unsteady Simulation of a Modern High Pressure Turbine Stage Using Phase Lag Periodicity: Analysis of Flow and Heat Transfer

Author:

Shyam Vikram1,Ameri Ali2,Luk Daniel F.3,Chen Jen-Ping3

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH 44135

2. Ohio State University, Columbus, OH 43210; NASA Glenn Research Center, Cleveland, OH 44135

3. Ohio State University, Columbus, OH 43210

Abstract

Unsteady 3D Reynolds-averaged Navier–Stokes (RANS) simulations have been performed on a highly loaded transonic turbine stage, and results are compared with steady calculations and experiments. A low Reynolds number k-ε turbulence model is employed to provide closure for the RANS system. A phase lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this paper is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agree favorably with the experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere, except at the leading edge. The shock structure formed, due to stator-rotor interaction, is analyzed. Heat transfer and pressure at the hub and casing are also studied. Thermal segregation is observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3