A Numerical Study of Density-Unstable Reverse Circulation Displacement for Primary Cementing

Author:

Skadsem Hans Joakim12,Kragset Steinar2

Affiliation:

1. University of Stavanger Department of Energy and Petroleum Engineering, , P.O. Box 8600, Stavanger , Norway ;

2. NORCE Norwegian Research Centre AS , P.O. Box 8046, Stavanger , Norway

Abstract

Abstract Primary cementing of the casing string is the operation where the annular space behind the casing is displaced to a cement slurry. Once hardened, the cement should form a solid annular barrier and provide zonal isolation behind the casing. Reverse circulation cementing involves injecting the cement slurry directly into the annulus that is to be cemented, displacing drilling fluid down the well. This will normally represent a density-unstable situation with an increased risk of inter-mixing of fluids and slurry contamination compared to conventional circulation cementing. This study addresses the reverse circulation displacement mechanics and is based on a reverse circulation field case where the quality of the hardened cement has previously been established by characterization of two retrieved joints. We use 3D numerical simulations to study possible displacement conditions and compare findings qualitatively to the actual cement. Additional simulations indicate the importance of imposed flowrate and viscous stresses in suppressing the destabilizing effect of buoyancy. A simplified one-dimensional displacement model provides reasonable predictions of the front propagation speed in vertical, concentric annuli, and correct identification of conditions results in backflow of lighter fluid. To the best of our knowledge, this study is the first numerical study undertaken to better understand density-unstable displacements in annular geometries.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3