A Dynamic Modeling Approach for Spindle Bearing System Supported by Both Angular Contact Ball Bearing and Floating Displacement Bearing

Author:

Xi Songtao1,Cao Hongrui1,Chen Xuefeng2,Niu Linkai3

Affiliation:

1. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China e-mail:

2. Professor State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China e-mail:

3. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China

Abstract

This paper presents a new dynamic modeling approach for spindle bearing system supported by both angular contact ball bearing (ACBB) and floating displacement bearing (FDB). First, a dynamic model of FDB is developed based on the discrete element method with each bearing component having six degrees-of-freedom (DOFs). Based on the developed FDB dynamic model and Gupta ACBB dynamic model, a fully coupled dynamic model of the spindle bearing system combined both ACBBs, and FDB is developed. In the proposed spindle bearing system model, the spindle shaft is modeled using finite element (FE) method based on the Timoshenko beam theory with the consideration of centrifugal force and gyroscopic moment. The coupling restriction between the dynamic bearing models and the FE spindle shaft model are the restoring forces and moments that are transmitted to the shaft by the bearings and the dynamic vibration response shared by both the bearing inner races and the corresponding nodes of the shaft where bearings are installed. A Fortran language-based program has been developed for the spindle bearing system with the dynamic bearing models solved using the Runge–Kutta–Fehlberg integration method and FE shaft model solved by Newmark-β method. Based on the developed model, the effect of the FDB radial clearance, system preload, and spindle rotating speed on the system dynamics, and the effect of the FDB radial clearance on the system unbalanced response have been investigated.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3