Quantification of a Single Gas Bubble Growth in Solvent(s)–CO2–Heavy Oil Systems With Consideration of Multicomponent Diffusion Under Nonequilibrium Conditions

Author:

Shi Yu1,Yang Daoyong2

Affiliation:

1. Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada

2. Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada e-mail:

Abstract

A mechanistic model has been developed and validated to quantify a single gas bubble growth with considering multicomponent gas diffusion in solvent(s)–CO2–heavy oil systems under nonequilibrium conditions. Experimentally, constant-composition expansion (CCE) experiments are conducted for C3H8–CO2–heavy oil systems under equilibrium and nonequilibrium conditions, respectively. Theoretically, the classic continuity equation, motion equation, diffusion–convection equation, real gas equation, and Peng–Robinson equation of state (PR EOS) are integrated into an equation matrix to dynamically predict gas bubble growth. Also, the viscous term of motion equation on the gas phase pressure is included due mainly to the viscous nature of heavy oil. The newly proposed model has been validated by using the experimentally measured gas bubble radius as a function of time with good accuracy. Combining with the experimental measurements, the critical nucleus radius and gas bubble growth are quantitatively predicted with the newly proposed model. Effects of mass transfer, supersaturation pressure, mole concentration of each component, liquid cell radius, and pressure decline rate on the gas bubble growth are examined and analyzed. In general, gas bubble growth rate is found to increase with an increase of each of the aforementioned five parameters though the contribution of individual component in a gas mixture to the bubble growth rate is different. A one-step pressure drop and the unlimited liquid volume surrounding a gas bubble are considered to be the necessary conditions to generate the linear relationship between gas bubble radius and the square root of time.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3