Brush Seal Structural Analysis and Correlation With Tests for Turbine Conditions

Author:

Tolga Duran E.1,Aksit Mahmut F.2,Ozmusul Murat1

Affiliation:

1. SDM R&D, Istanbul 34906, Turkey e-mail:

2. Mechatronics, Sabanci University, Istanbul 34956, Turkey e-mail:

Abstract

Bristle tip contact forces and resulting stress levels under engine conditions are critical for optimizing brush seal performance as well as for achieving operational safety. Literature survey reveals the lack of test data and analysis methods for evaluating seal stiffness and stress levels under operating conditions. In an attempt to meet this need, a custom test rig design and methodology have been developed to perform stiffness tests under pressure and rotor speed of 3000 rpm. Finite element (FE) simulations have been performed for brush seals and results have been correlated with the test data of this study. Considering the critical importance of contact loads on brush seal overall performance and system health, and due to the complicated structure of brush seals, where bristles are contacting with each other as well as with the backing plate and the rotor, computer-aided engineering (CAE) analyses with high fidelity is required to simulate the test and turbine operating conditions. For this purpose, FE methodology has been developed for structural analyses of brush seals. Three-dimensional FE models of brush seals have been constructed and simulations have been performed for pressurized rotor-rub conditions. CAE model of brush seals includes rotor–bristle, bristle pack–backing plate, and interbristle contacts with friction. Simulations with nonrotating rotor and transient analyses with rotating rotor have been conducted, and the extracted bristle tip force (BTF) levels are correlated with the test results. Inertial effects during dynamic tests have also been simulated through transient analyses and results show good agreement with the dynamic test data. Displacement and stress profiles obtained from correlated FE models give better understanding of brush seal behavior under turbine operating conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical research on contact friction force with different structural brush seal hysteresis characteristics under differential pressure;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-10-21

2. Influence of brush seal hysteresis effect on the nonlinear characteristics of rotor system;Communications in Nonlinear Science and Numerical Simulation;2023-06

3. Methodology for Counter Torque, Power Loss, and Frictional Heat for Brush Seals Under Eccentric Transients;Tribology Transactions;2023-02-09

4. Oil Brush Seals in Turbomachinery: Flow Analyses and Closed-Form Solutions;Journal of Engineering for Gas Turbines and Power;2020-09-23

5. Theoretical and numerical investigation into brush seal hysteresis without pressure differential;Advanced Composites Letters;2019-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3