Torsional Friction Behavior of Contact Interface Between PEEK and CoCrMo in Calf Serum

Author:

Liu Dongliang1,Wang Qingliang2,Zhang Dekun1,Wang Jian1,Zhang Xiao1

Affiliation:

1. School of Material Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Material Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China e-mail:

Abstract

Polyether ether ketone (PEEK) and its composites are recognized as alternative bearing materials for use in arthroplasty because of their excellent mechanical properties. In this paper, torsional friction tests of PEEK against the CoCrMo alloy, simulating the contact mode between the prosthesis tibia and femur, were carried out under a 25% calf serum solution in a Leeds Prosim knee simulator. The torsional friction behavior of PEEK against the CoCrMo alloy was investigated under various normal loads (1000 N, 1600 N and 2200 N), torsional angular displacement amplitudes (±1 deg, ±3 deg, and ±5 deg), and the number of cycles (7500, 15,000, and 30,000). The torsional friction characteristics and damage mechanism are discussed. The results show that PEEK exhibited low friction coefficient under the different conditions. With increases in the torsional angle and normal load, three types of torque/angular displacement amplitude (T–θ) curves (i.e., linear, parallelogram, and elliptical loops) were observed and analyzed during the process of torsional friction. With the increase of the torsional angle, the coefficient of friction decreases. And the contact states change from the partial slip regime to the slip regime. The greater the torsional angle displacement, the more severe the damage to the PEEK surface. With an increase in the normal load, the wear scars increased. The wear depth is deepened and the width is widened, and the wear gradually becomes serious with an increase in the load. The small load is more likely to cause damage to the central area of PEEK, and the larger load causes more serious damage to the marginal region. The central and marginal regions of the PEEK sample have different wear characteristics. The worn surfaces of the central regions were characterized by convex ridges resulting from plastic deformation, while curved ploughs and fatigue peeling appeared in the marginal region. The wear mechanism of PEEK in the central region is plastic deformation, while fatigue wear and abrasive wear mainly appeared in the marginal region.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning and Physics: A Survey of Integrated Models;ACM Computing Surveys;2023-11-25

2. Tribological behaviour of polycarbonate urethane against Ti-6Al-4V for long-term resilient;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2023-02-12

3. Torsion Wear Behavior of PEEK-on-UHMWPE as an All-Polymer Joint Combination in Total Knee Replacement;Tribology Transactions;2022-03-04

4. Slow-release lubrication of artificial joints using self-healing polyvinyl alcohol/polyethylene glycol/ graphene oxide hydrogel;Journal of the Mechanical Behavior of Biomedical Materials;2021-12

5. Bio-tribological behavior of articular cartilage based on biological morphology;Journal of Materials Science: Materials in Medicine;2021-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3