Reduced-Order Modeling and Experimental Studies of Bilaterally Coupled Fluid–Structure Interaction in Single-Degree-of-Freedom Flapping Wings

Author:

Schwab Ryan K.1,Reid Heidi E.1,Jankauski Mark1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT 59717-3800

Abstract

Abstract Flapping wings deform under both aerodynamic and inertial forces. However, many flapping wing fluid–structure interaction (FSI) models require significant computational resources which limit their effectiveness for high-dimensional parametric studies. Here, we present a simple bilaterally coupled FSI model for a wing subject to single-degree-of-freedom (SDOF) flapping. The model is reduced-order and can be solved several orders of magnitude faster than direct computational methods. To verify the model experimentally, we construct a SDOF rotation stage and measure basal strain of a flapping wing in-air and in-vacuum. Overall, the derived model estimates wing strain with good accuracy. In-vacuum, the wing has a large 3ω response when flapping at approximately one-third of its natural frequency due to a superharmonic resonance, where the superharmonic occurs due to the interaction of inertial forces and time-varying centrifugal softening. In-air, this 3ω response is attenuated significantly as a result of aerodynamic damping, whereas the primary ω response is increased due to aerodynamic loading. These results highlight the importance of (1) bilateral coupling between the fluid and structure, since unilaterally coupled approaches do not adequately describe deformation-induced aerodynamic damping and (2) time-varying stiffness, which generates superharmonics of the flapping frequency in the wing’s dynamic response. The simple SDOF model and experimental study presented in this work demonstrate the potential for a reduced-order FSI model that considers both bilateral fluid–structure coupling and realistic multi-degrees-of-freedom flapping kinematics moving forward.

Funder

National Science Foundation - Division of Chemical, Bioengineering, Environmental and Transport Systems

Publisher

ASME International

Subject

General Engineering

Reference40 articles.

1. Flapping and Flexible Wings for Biological and Micro Air Vehicles;Shyy;Prog. Aerosp. Sci.,1999

2. Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications

3. The Novel Aerodynamics of Insect Flight: Applications to Micro-air Vehicles;Ellington;J. Exp. Biol.,1999

4. Mode Coupling and Flow Energy Harvesting by a Flapping Foil;Zhu;Phys. Fluids,2009

5. Optimal Frequency for Flow Energy Harvesting of a Flapping Foil;Zhu;J. Fluid Mech.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3