Dynamic Fracture of Layered Plates Subjected to In-Plane Bending

Author:

Kumar Agnihotri Servesh1,Parameswaran Venkitanarayanan2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

2. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India e-mail:

Abstract

Layered structures typically used in applications such as windshields, thermal protection systems, heavy armor, etc., have property jumps at the layer interfaces. Present study focuses on understanding crack initiation and propagation in such systems under dynamic loading particularly when the property jumps are across the crack front. Layered plates were fabricated by joining polymethylmethacrylate (PMMA) and epoxy sheets using an epoxy-based adhesive (Araldite). Single-edge notched (SEN) specimens were subjected to dynamic loading using a modified Hopkinson bar setup. High-speed imaging coupled with dynamic photoelasticity was used to record the crack-tip isochromatic fringes from which the stress intensity factor (SIF) history was obtained. In selected experiments, a pair of strain gages installed on surfaces of specimen was used to record the strain history in the layers, from which the SIF in each layer was obtained. The results indicated that, prior to crack extension, the strain in both layers was identical. The crack tips in the layers start extending at different time instants with the one in the relatively brittle epoxy layer extending first followed by the one in the PMMA layer. At low impact velocity, the delay obtained was significantly higher than that at high impact velocity. The speed of epoxy crack was lower initially due to the bridging of the crack by the uncracked portion of the PMMA layer till initiation of the crack in the PMMA layer. This effect reduced at higher impact velocity for which the delay was much lower and the cracks propagated at a higher-speed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3