Heat Transfer in Rotating Multipass Rectangular Ribbed Channel With and Without a Turning Vane

Author:

Lei Jiang1,Li Shiou-Jiuan,Han Je-Chin2,Zhang Luzeng3,Moon Hee-Koo4

Affiliation:

1. Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China e-mail:

2. e-mail:  Texas A&M University, College Station, TX 77843

3. e-mail:

4. Solar Turbines Incorporated, San Diego, CA 92101

Abstract

This paper experimentally investigates the effect of a turning vane in hub region on heat transfer in a multipass rectangular channel with rib-roughed wall at high rotation numbers. The experimental data were taken in the second and the third passages (aspect ratio = 2:1) connected by an 180 deg U-bend. The flow was radial inward in the second passage and was radial outward after the 180 deg U-bend in the third passage. The square-edged ribs with P/e = 8, e/Dh = 0.1, and α = 45 deg were applied on the leading and trailing surfaces of the second and the third passages. Results showed that rotation increases heat transfer on the leading surface but decreases it on the trailing surface in the second passage. In the third passage, rotation decreases heat transfer on the leading surface but increases it on the trailing surface. Without a turning vane, rotation reduces heat transfer on the trailing surface and increases it on the leading surface in the hub 180 deg turn region. After adding a half-circle-shaped turning vane, heat transfer coefficients do not change in the second passage before-turn while they are different in the turn region and after-turn region in the third passage. Regional heat transfer coefficients are correlated with rotation numbers for multipass rectangular ribbed channel with and without a turning vane.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3