A Generalized Variational Method and Its Applications in Design of the Single-Jack Flexible Nozzle

Author:

Li Zhi1,Yu Chengguo23,Meng LiCheng4,Qi Luqiao1,Qiu Jian56,Shi Yan1,Gao Cunfa1

Affiliation:

1. Nanjing University of Aeronautics & Astronautics State Key Laboratory of Mechanics and, Control of Mechanical Structures, , Nanjing 210016 , China

2. Xi'an Research Institute of High Technology College of Missile Engineering, , Xi'an 710025 , China ;

3. China Aerodynamics Research and, Development Center Facility Design and Instrumentation Institute, , Mianyang 621000 , China

4. China Aerodynamics Research and, Development Center , Mianyang 621000 , China

5. Nanjing University of Aeronautics & Astronautics State Key Laboratory of Mechanics and, Control of Mechanical Structures, , Nanjing 210016 , China ;

6. Shaoguan University School of Chemistry and Civil Engineering, , Shaoguan 512005 , China

Abstract

Abstract Nozzle facilities, which can generate high Mach number flows, are the core portions of the supersonic wind tunnel. Different from traditional fixed nozzles, a flexible nozzle can deform to designed contours and supply steady core flows in several Mach numbers. Due to the high-quality demands from the thermo-aerodynamic testing, the deformation of the flexible nozzle plate should be carefully designed. This problem is usually converted into the large deformation problem of a cantilever with movable hinge boundary conditions. In this paper, a generalized variational method is established to analyze the deformation behavior of the flexible nozzle. By introducing axial deformation constraint and Lagrange multiplier, an analytical model is derived to predict the deformed morphology of the flexible plate. Finite element analyses (FEA) of a single-jack flexible nozzle model is performed to examine the predicted deformations and reaction forces. Furthermore, the large deformation experiments of an elastic cantilever with a movable hinge connection are carried out to simulate the scenarios in supersonic flexible nozzle facility. Both the FEA and experimental results show high accuracy of current theoretical model in deformation predictions. This method can also serve as a general approach in the design of flexible mechanisms with movable boundaries.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3