Affiliation:
1. Boiling and Two-Phase Flow Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
Abstract
A high flux electronic chip was numerically and experimentally simulated to investigate pool boiling capabilities of enhanced metallic surface attachments built upon a 12.7 × 12.7 mm2 base area. It is shown how experimental nucleate boiling data for a flat chip and for chips with low-profile microstructures can be used as input boundary conditions in the numerical prediction of boiling performances of high flux, smooth and microstructured extended cylindrical surfaces. A technique for extending the applicability of the numerical results to cylindrical fin arrays is demonstrated with the aid of experimental data obtained for these surfaces. Surface enhancement resulted in chip planform heat fluxes of 105.4 and 159.3 W/cm2, for saturated and 35°C subcooled FC-72, respectively.
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献