Application of Genetic Algorithms to the Synthesis of Riser Configurations

Author:

Vieira Luciano T.1,de Lima Beatriz de S. L. P.2,Evsukoff Alexandre G.1,Jacob Breno P.1

Affiliation:

1. COPPE/UFRJ, Rio de Janeiro, RJ, Brazil

2. EE-UFRJ, Rio de Janeiro, RJ, Brazil

Abstract

The purpose of this work is to describe the application of Genetic Algorithms in the search of the best configuration of catenary riser systems in deep waters. Particularly, an optimization methodology based on genetic algorithms is implemented on a computer program, in order to seek an optimum geometric configuration for a steel catenary riser in a lazy-wave configuration. This problem is characterized by a very large space of possible solutions; the use of traditional methods is an exhaustive work, since there is a large number of variables and parameters that define this type of system. Genetic algorithms are more robust than the more commonly used optimization techniques. They use random choice as a tool to guide a search toward regions of the search space with likely improvements. Some differences such as the coding of the parameter set, the search from a population of points, the use of objective functions and randomized operators are factors that contribute to the robustness of a genetic algorithm and result in advantages over traditional techniques. The implemented methodology has as baseline one or more criteria established by the experience of the offshore engineer. The implementation of an intelligent methodology oriented specifically to the optimization and synthesis of riser configurations will not only facilitate the work of manipulating a huge mass of data, but also assure the best alternative between all the possible ones, searching in a much larger space of possible solutions than classical methods.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3