A Computational Study on the Effects of Surface Tension and Prandtl Number on Laminar-Wavy Falling-Film Condensation

Author:

Nabil Mahdi1,Rattner Alexander S.2

Affiliation:

1. Mem. ASME Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 e-mail:

2. Mem. ASME Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 236A Reber Building, University Park, PA 16802 e-mail:

Abstract

Characterization of wavy film heat and mass transfer is essential for numerous energy-intensive chemical and industrial applications. While surface tension is the underlying cause of film waviness, widely used correlations for falling-film heat transfer do not account for surface tension magnitude as a governing parameter. Furthermore, although the effect of Prandtl number on wavy falling-film heat transfer has been highlighted in some studies, it is not included in most published Nusselt number correlations. Contradictory trends for Nusselt number variation with Prandtl number are found in correlations that do account for such effects. A systematic simulation-based parametric study is performed here to determine the individual effects of Reynolds, Prandtl, capillary, and Jakob numbers on heat transfer in laminar-wavy falling-films. First-principles based volume-of-fluid (VOF) simulations are performed for wavy falling condensation with varying fluid properties and flow rates. A sharp surface tension volumetric force model is employed to predict wavy interface behavior. The numerical model is first validated for smooth falling-film condensation heat transfer and wavy falling-film thickness. The simulation approach is applied to identify Nusselt number trends with Reynolds, Prandtl, capillary, and Jakob numbers. Finally, based on the collected simulation data, a new Nusselt number correlation for laminar-wavy falling-film condensation is proposed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference57 articles.

1. A Review of Absorption Refrigeration Technologies;Renewable Sustainable Energy Rev.,2001

2. Falling-Film Evaporation on Horizontal Tubes—A Critical Review;Int. J. Refrig.,2005

3. Local Heat-Transfer Coefficients for Condensation of Steam in Vertical Downflow Within a 5/8-Inch-Diameter Tube,1966

4. Heat Transfer to Evaporating Liquid Films;ASME J. Heat Transfer,1971

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3