Microstructural Mechanics of Collagen Gels in Confined Compression: Poroelasticity, Viscoelasticity, and Collapse

Author:

Chandran Preethi L.1,Barocas Victor H.1

Affiliation:

1. Department of Biomedical Engineering, University of Minnesota, 312 Church St SE, Minneapolis, MN 55455

Abstract

Background: Collagen gels are important as platforms for in vitro study of cell behavior and as prototypical bioartificial tissues, but their mechanical behavior, particularly on the microscopic scale, is still poorly understood. Method of Approach: Collagen gels were studied in step (10% strain in 0.05 s) and ramp (0.1%/s strain rate for 100 s) confined compression. Real-time birefringence mapping gave the local collagen concentration and orientation along with piston stress. Variations in the retardation allowed material-point tracking and qualitative determination of the strain distribution. Results: Ramp tests showed classical poroelastic behavior: compression near the piston and relaxation to a uniform state. Step tests, however, showed an irreversibly collapsed region near the piston. Conclusions: Our results suggest that interstitial flow and fibril bending at crosslinks are the dominant mechanical processes during compression, and that fibril bending is reversible before collapse.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3