Numerical Investigations of Flow and Heat Transfer Characteristics Between Turbulent Double Jet Impingement and a Moving Plate

Author:

Satish N.1,Venkatasubbaiah K.2

Affiliation:

1. Research Scholar Department of Mechanical and Aerospace Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502285, India e-mail:

2. Associate Professor Department of Mechanical and Aerospace Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502285, India e-mail:

Abstract

The analysis of fluid flow and heat transfer characteristics of double turbulent jet flow impinging on a stationary and moving plate has been numerically studied. Unsteady-state two-dimensional incompressible turbulent forced convection flow is considered for present analysis. Turbulence is modelled by the Reynolds-averaged Navier–Stokes (RANS) equation with the k − ε model and enhanced wall treatment. The governing equations are solved using a finite volume based commercial solver. The results for the effect of single jet and double jet, jet Reynolds number, plate velocity, location, and center spacing between the two jets on flow and heat transfer characteristics are reported. The results show that the enhancement of heat transfer is 32.70% for the double jet compared with the single jet impingement on a stationary plate. As significant enhancement of heat transfer is observed with an increase in the second jet Reynolds number and plate velocity. The results show that the size and shape of the recirculation zones between jets are greatly altered with respect to spacing between the jets to the plate and the center distance between the jets. The results show that the enhancement of heat transfer is 37.3% for moving plate velocity due to a decrease in the spacing between the jets and the plate from 6 to 4. Results show that the local peak Nusselt number is influenced by the plate velocity. These results are validated by experimental and numerical results available in the literature.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3