Conjugate Heat Transfer Study of Turbulent Slot Impinging Jet

Author:

Madhusudana Achari A.1,Kumar Das Manab2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, Kharagpur 721302, West Bengal, India

2. Professor Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, Kharagpur 721302, West Bengal, India e-mail:

Abstract

Conjugate heat transfer in a two-dimensional, steady, incompressible, confined, turbulent slot jet impinging normally on a flat plate of finite thickness is one of the important problems as it mimics closely with industrial applications. The standard high Reynolds number two-equation k–ε eddy viscosity model has been used as the turbulence model. The turbulence intensity and the Reynolds number considered at the inlet are 2% and 15,000, respectively. The bottom face of the impingement plate is maintained at a constant temperature higher than the jet exit temperature and subjected with constant heat flux for the two cases considered in the study. The confinement plate is considered to be adiabatic. A parametric study has been done by analyzing the effect of nozzle-to-plate distance (4–8), Prandtl number of the fluid (0.1–100), thermal conductivity ratio of solid to fluid (1–1000), and impingement plate thickness (1–10) on distribution of solid–fluid interface temperature, bottom surface temperature (for constant heat flux case), local Nusselt number, and local heat flux. Effort has been given to relate the heat transfer behavior with the flow field. The crossover of distribution of local Nusselt number and local heat flux in a specified region when plotted for different nozzle-to-plate distances has been discussed. It is found that the Nusselt number distribution for different thermal conductivity ratios of solid-to-fluid and impingement plate thicknesses superimposed with each other indicating that the Nusselt number as a fluid flow property remains independent of solid plate properties.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference47 articles.

1. A Review of Heat Transfer Data for Single Circular Jet Impingement;Int. J. Heat Fluid Flow,1992

2. Heat Transfer to Impinging Isothermal Gas and Flame Jets;Exp. Therm. Fluid Sci.,1993

3. Multiple Jet Impingement—A Review;Heat Transfer Res.,2011

4. Recent Trends in Computation of Turbulent Jet Impingement Heat Transfer;Heat Transfer Eng.,2012

5. Impingement Transfer Coefficients Due to Initially Laminar Slot Jets;Int. J. Heat Mass Transfer,1975

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3