Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials

Author:

Prasher Ravi S.1,Shipley Jim1,Prstic Suzana1,Koning Paul1,Wang Jin-lin1

Affiliation:

1. Ch5-157, Intel Corporation, 5000 W. Chandler Blvd., Chandler, AZ 85226-3699

Abstract

Particle laden polymers are one of the most prominent thermal interface materials (TIM) used in electronics cooling. Most of the research has primarily dealt with the understanding of the thermal conductivity of these types of TIMs. For thermal design, reduction of the thermal resistance is the end goal. Thermal resistance is not only dependent on the thermal conductivity, but also on the bond line thickness (BLT) of these TIMs. It is not clear which material property(s) of these particle laden TIMs affects the BLT and eventually the thermal resistance. This paper introduces a rheology based semiempirical model for the prediction of the BLT of these TIMs. BLT depends on the yield stress of the particle laden polymer and the applied pressure. The BLT model combined with the thermal conductivity model can be used for modeling the thermal resistance of these TIMs for factors such as particle volume faction, particle shape, base polymer viscosity, etc. This paper shows that there exists an optimal filler volume fraction at which thermal resistance is minimum. Finally this paper develops design rules for the optimization of thermal resistance for particle laden TIMs.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference27 articles.

1. Prasher, R. S. , 2001, “Surface Chemistry Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials,” ASME J. Heat Transfer, 123, pp. 969–975.

2. Gwinn, J. P., and Webb, R. L., 2002, “Performance and Testing of Thermal Interface Materials,” Thermes 2002, Y. K. Joshi and S. V. Garimella, eds., Santa Fe, New Mexico, 13–16 January.

3. Suddith, R. D. , 1993, “A Generalized Model to Predict the Viscosity of Solutions With Suspended Particles. 1,” J. Appl. Polym. Sci., 48, pp. 25–36.

4. Xu, Y., Luo, X., and Chung, D. D. L., 2000, “Sodium Silicate Based Thermal Interface Material for High Thermal Contact Conductance,” ASME J. Electron. Packag., 122, pp. 128–131.

5. Prasher, R. S., Koning, P., Shipley, J., and Devpura, A., 2001, “Dependence of Thermal Conductivity and Mechanical Rigidity of Particle-Laden Polymeric. Thermal Interface Material on Particle Volume Fraction,” Proc. of International Mech. Eng. Cong. and Exp., New York, Nov. 11–16.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3