Low NOx Lean Premix Reheat Combustion in Alstom GT24 Gas Turbines

Author:

Guyot Daniel1,Tea Gabrielle1,Appel Christoph1

Affiliation:

1. Alstom (Switzerland) Ltd., Brown Boveri Strasse 7, Baden 5401, Switzerland e-mail:

Abstract

Reducing gas turbine emissions and increasing their operational flexibility are key targets in today's gas turbine market. In order to further reduce emissions and increase the operational flexibility of its GT24 (60 Hz) and GT26 (50 Hz), Alstom has introduced an improved sequential environmental (SEV) burner and fuel lance into its GT24 and GT26 upgrades 2011 sequential reheat combustion system. Sequential combustion is a key differentiator of Alstom GT24/GT26 engines in the F-class gas turbine market. The inlet temperature for the SEV combustor is around 1000 °C and reaction of the fuel/oxidant mixture is initiated through auto-ignition. The recent development of the Alstom sequential combustion system is a perfect example of evolutionary design optimizations and technology transfer between Alstom GT24 and GT26 engines. Better overall performance is achieved through improved SEV burner aerodynamics and fuel injection, while keeping the main features of the sequential burner technology. The improved SEV burner/lance concept has been optimized toward rapid fuel/oxidant mixing for low emissions, improved fuel flexibility with regard to highly reactive fuels (higher C2+ and hydrogen content), and to sustain a wide operation window. The burner front panel features an improved cooling concept based on near-wall cooling as well as integrated acoustics damping devices designed to reduce combustion pulsations, thus extending the SEV combustor's operation window even further. After having been validated extensively in Alstom's high pressure (HP) sector rig test facility, the improved GT24 SEV burner has been retrofitted into a commercial GT24 field engine for full engine validation during long-term operation. This paper presents the obtained HP sector rig and engine validation results for the GT24 (2011) SEV burner/lance hardware with a focus on reduced NOx and CO emissions and improved operational behavior of the SEV combustor. The HP tests demonstrated robust SEV burner/lance operation with up to 50% lower NOx formation and a more than 70 K higher SEV burner inlet temperature compared to the GT24 (2006) hardware. For the GT24 engine with retrofitted upgrade 2011 SEV burner/lance, all validation targets were achieved including an extremely robust operation behavior, up to 40% lower GT NOx emissions, significantly lower CO emissions at partload and baseload, a very broad operation window (up to 100 K width in SEV combustor inlet temperature), and all measured SEV burner/lance temperatures in the expected range. Sector rig and engine validation results have confirmed the expected SEV burner fuel flexibility (up to 18 vol. % C2+ and up to 5 vol. % hydrogen as standard).

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference16 articles.

1. KA24/GT24 From Alstom—The Pioneer in Operational Flexibility,2011

2. The Alstom GT26/KA26—The Pioneer in Operational Flexibility for the Russian Gas Power Market,2012

3. Development of the Sequential Combustion System for the ABB GT24/GT26 Gas Turbine Family,1996

4. Combustor Design for Low Emissions and Long Lifetime Requirements,2009

5. Alstom Fuel Flexibility for Today's and Future Market Requirements,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3