Instabilities Arising From the Frictional Interaction of a Pin-Disk System Resulting in Noise Generation

Author:

Earles S. W. E.1,Lee C. K.1

Affiliation:

1. Department of Mechanical Engineering, Queen Mary College (University of London), Mile End Road, London, England

Abstract

A steel pin, supported on a flexible cantilever, is pressed against a thin steel disk which rotates at a uniform angular speed. The orientation of the pin’s central axis to the plane of the disk, the bending and torsional stiffnesses of the pin support, the stiffness of the disk, and the line of action of the resultant interactive force are all shown to affect the self-induced coupled frequencies and modes generated. The analysis of the experimental arrangement in terms of a three-degree-of-freedom pin subsystem and a single-degree-of-freedom disk element suggests that the system is unstable for certain combinations of the variables. The instabilities are shown to belong to a class of “geometrically induced” or “kinematic constraint” instability. The region of squeal-noise generation within the experimental rig is shown to correspond to the oscillatory unstable region predicted theoretically. The noise generated is similar to disk-brake squeal, and so the work furthers the understanding of this practical problem.

Publisher

ASME International

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3