Boundary Slip-Induced Temperature Rise and Film Thickness Reduction Under Sliding/Rolling Contact in Thermal Elastohydrodynamic Lubrication

Author:

Meng Xianghua1,Wang Jing2,Nagayama Gyoko3

Affiliation:

1. Graduate School of Engineering, Kyushu Institute of Technology, Fukuoka 8048550, Japan

2. College of Mechanical Engineering, Donghua University, Shanghai 201620, China

3. Department of Mechanical Engineering, Kyushu Institute of Technology, Fukuok 8048550, Japan

Abstract

Abstract Temperature rise and film thickness reduction are the most important factors in elastohydrodynamic lubrication (EHL). In the EHL contact area, interfacial resistances (velocity/thermal slips) induced by the molecular interaction between lubricant and solid become significant due to the large surface/volume ratio. Although the velocity slip has been investigated extensively, less attention has been paid on the thermal slip in the EHL regime. In this study, numerical simulations were conducted by applying three cases of boundary slips to surfaces under sliding/rolling contacts moving in the same direction for the Newtonian thermal EHL. We found that the coupled velocity/thermal slips lead the most significant temperature rise and film thickness reduction among the three cases. The velocity slip results in a lower temperature in the lubricant and solids, whereas the thermal slip causes a temperature rise in the entire contact area in the lubricant as the film thickness decreases simultaneously. Furthermore, the effect of thermal slip on lubrication is more dominant than that of velocity slip, which increases the entrainment velocity or slide–roll ratio.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3