Numerical Modeling of Non-Newtonian Fluid Flow in a Porous Medium Using a Three-Dimensional Periodic Array

Author:

Inoue Masahiko1,Nakayama Akira1

Affiliation:

1. Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, 432 Japan

Abstract

Three-dimensional numerical experiments have been conducted to investigate the viscous and porous inertia effects on the pressure drop in a non-Newtonian fluid flow through a porous medium. A collection of cubes placed in a region of infinite extent has been proposed as a three-dimensional model of microscopic porous structure. A full set of three-dimensional momentum equations is treated along with the continuity equation at a pore scale, so as to simulate a flow through an infinite number of obstacles arranged in a regular pattern. The microscopic numerical results, thus obtained, are processed to extract the macroscopic relationship between the pressure gradient-mass flow rate. The modified permeability determined by reading the intercept value in the plot showing the dimensionless pressure gradient versus Reynolds number closely follows Christopher and Middleman’s formula based on a hydraulic radius concept. Upon comparing the results based on the two- and three-dimensional models, it has been found that only the three-dimensional model can capture the porous inertia effects on the pressure drop, correctly. The resulting expression for the porous inertia possesses the same functional form as Ergun’s, but its level is found to be only one third of Ergun’s.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3