On Experimental Studies of Longitudinal and Flexural Wave Propagations: An Annotated Bibliography

Author:

Al-Mousawi M. M.1

Affiliation:

1. Department of Engineering, University of Aberdeen, Natural Philosophy Building, Aberdeen AB9 2UE, Scotland, United Kingdom

Abstract

Experimental investigations in the field of longitudinal wave propagation in beams are plentiful; however, experimental studies of flexural wave propagation problems are scarce and are restricted mainly to uniform and infinite structures where the effects of reflected waves are not generally included. This review is mostly restricted to low velocity impact and does not cover the so-called high velocity impact such as those of bullets and explosives. In addition to a brief survey of classical work related to impact, this article covers publications related to experimental studies of longitudinal and flexural elastic waves due to impact. This includes the longitudinal, central as well as eccentric impact and transverse impact of two bars and the impact achieved by sphere impinging on a beam. Many workers used experimental findings to study the adequacy of various theoretical solutions of the wave propagation problem such as those by Pochhammer and Chree, Euler–Bernoulli, and the Timoshenko beam theory. The revival of interest in the recent years is due to, among other things, the advancement of experimental equipment and measurement techniques for data acquisition of stress waves and associated signals. An important application of transient waves is their use for the determination of material properties under various loading conditions and strain rates that can be studied by the split Hopkinson pressure bar techniques. The problem of longitudinal and flexural waves in bars with discontinuities of cross section are covered, and some publications on fracture of materials due to bending waves are also included. Experimental investigations demonstrate the effect of abrupt change of cross section and/or material properties on reflected and transmitted waves where reflections are to be taken into consideration when estimating the level of stresses and strains in finite beam with discontinuities. In the field of flexural wave propagation, comparison of theoretical predictions with experimental results verified and validated the adequacy of the Timoshenko theory for the determination of bending strain in finite structures, a one-dimensional theory that takes into account the effect of shear deformation and rotatory inertia.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3