Experimental Investigation on Heat Transfer and Friction Factor in Open Matrix Subchannels

Author:

Prajapati Anjana N.1,Tariq Andallib1

Affiliation:

1. AVTAR (Aerodynamics Visualization and Thermal Analysis Research) Lab, Mechanical and Industrial Engineering Department, Indian Institute of Technology, Roorkee, Uttarakhand 247 667, India

Abstract

Abstract Matrix cooling has opened new possibilities for enhancing the convective heat transfer coefficients without compromising upon the structural rigidity and the life of the gas turbine blade at elevated temperatures. However, the dense structure of the matrix significantly increases the flow resistance and imposes the limitation to its usage. Recently, a matrix with a gap on the sidewalls called open matrix has been proposed by few researchers to reduce the associated pressure penalties. This detailed experimental investigation aims to study the open matrix channel flow and presents the effects of varying sidewall gaps on heat transfer characteristics and friction factor in the open matrixes having rib angle 45 deg for three different subchannel aspect ratios 1.2, 0.8, and 0.4. Liquid crystal thermography has been utilized to discern the detailed heat transfer characteristics. The results have been evaluated in terms of augmentation Nusselt number, friction factor ratio, and overall thermal performance factor over the Reynolds numbers 5800–14,000. The closed matrixes provided the highest augmentation in Nusselt number, and the gaps on the sidewall have shown an overall reduction in augmentation Nusselt number in most cases. However, the suitable sidewall gaps show the effective reduction in pressure penalties for the smaller subchannel aspect ratios. The highest augmentation Nusselt number among the open matrixes has been found as 3.83 with a reduced friction factor ratio for the matrix with a 4-mm gap in subchannel aspect ratio = 0.8 (i.e., 4 subchannels) at Re = 8100.

Funder

Defence Research and Development Organisation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3