The Instability of a Round Jet Surrounded by an Annular Shear Layer

Author:

Anderson R.1,Bejan A.2

Affiliation:

1. Solar Energy Research Institute, Golden, CO 80401

2. Department of Mechanical Engineering and Materials Science, Duke University, Durham, N.C. 27706

Abstract

A linear stability analysis of the large-scale structure of a round jet surrounded by an annular shear layer is presented. The study is limited to the developing region near the jet nozzle in the limit Re→∞. The radial dependence of the amplitudes of growing disturbances are examined in order to illustrate the extent to which the disturbances penetrate into the jet and its surroundings. The region influenced by a disturbance is found to be directly proportional to the wavelength of the disturbance. Disturbance measurements made on the jet centerline tend to select for long wavelength disturbances, while measurements made in the shear layer tend to select for short wavelength disturbances. When the shear layer thickness is small compared with the jet radius, the wavelength of the most amplified disturbance scales with the shear layer thickness. As the shear layer thickness increases, this scaling quickly breaks down. This change in scaling appears to be responsible for the transition between the “ripples” which occur near the jet nozzle and the “puffs” which are observed further downstream. Amplified disturbances exhibit a phase lag across the shear layer, which may account for the spade-like structures evident in flow visualizations of turbulent jets.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3