The Specific Growth Rates of Tissues: A Review and a Re-Evaluation

Author:

Cowin Stephen C.1

Affiliation:

1. Department of Biomedical Engineering, The City College of New York, 138th Street and Convent Avenue, New York, NY 10031

Abstract

The first objective of this review and re-evaluation is to present a brief history of efforts to mathematically model the growth of tissues. The second objective is to place this historical material in a current perspective where it may be of help in future research. The overall objective is to look backward in order to see ways forward. It is noted that two distinct methods of imaging or modeling the growth of an organism were inspired over 70 years ago by Thompson’s (1915, “XXVII Morphology and Mathematics,” Trans. - R. Soc. Edinbrgh, 50, pp. 857–895; 1942, On Growth and Form, Cambridge University Press, Cambridge, UK) method of coordinate transformations to study the growth and form of organisms. One is based on the solid mechanics concept of the deformation of an object, and the other is based on the fluid mechanics concept of the velocity field of a fluid. The solid mechanics model is called the distributed continuous growth (DCG) model by Skalak (1981, “Growth as a Finite Displacement Field,” Proceedings of the IUTAM Symposium on Finite Elasticity, D. E. Carlson and R. T. Shield, eds., Nijhoff, The Hague, pp. 348–355) and Skalak et al. (1982, “Analytical Description of Growth,” J. Theor. Biol., 94, pp. 555–577), and the fluid mechanics model is called the graphical growth velocity field representation (GVFR) by Cowin (2010, “Continuum Kinematical Modeling of Mass Increasing Biological Growth,” Int. J. Eng. Sci., 48, pp. 1137–1145). The GVFR is a minimum or simple model based only on the assumption that a velocity field may be used effectively to illustrate experimental results concerning the temporal evolution of the size and shape of the organism that reveals the centers of growth and growth gradients first described by Huxley (1924, “Constant Differential Growth-Ratios and Their Significance,” Nature (London), 114, pp. 895–896; 1972, Problems of Relative Growth, 2nd ed., L. MacVeagh, ed., Dover, New York). It is the method with an independent future that some earlier writers considered as an aspect of the DCG model. The development of the DCG hypothesis and the mixture theory models into models for the predicted growth of an organism is taking longer because these models are complicated and the development and refinement of the basic concepts are slower.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference99 articles.

1. Growth as a Finite Displacement Field;Skalak

2. Analytical Description of Growth;Skalak;J. Theor. Biol.

3. The ‘Laws’ of Biological Growth;Medawar;Nature (London)

4. On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies;Gompertz;Philos. Trans. R. Soc. London

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3