Investigation of the Wall Scalar Fluctuations Effect on Passive Scalar Turbulent Fields at Several Prandtl Numbers by Means of Direct Numerical Simulations

Author:

Chaouat Bruno1,Peyret Christophe1

Affiliation:

1. Department of Computational Fluid Dynamics ONERA, Université Paris-Saclay, Châtillon 92322, France

Abstract

Abstract We investigate the effect of the wall-scalar fluctuations on passive scalar turbulent fields for a moderate Reynolds number Rτ = 395 and for several Prandtl numbers ranging from the very low value Pr = 0.01 to the high value Pr = 10 by means of direct numerical simulation (DNS) simulations. Several cases of plane channel flows are considered. Case I is a channel flow heated on both walls with a constant imposed heat flux qw. We consider for this case two different types of boundary conditions. For the first one, the isoscalar boundary condition θw = 0 is imposed at the wall implying that its fluctuation and therefore its rms scalar fluctuations θrms=⟨θ′θ′⟩ is zero at the wall whereas in the second type, θw is not prescribed to a fixed value so that it is fluctuating in time at the wall leading to nonzero rms fluctuations. In this latter case, as the heat flux is maintained constant in time at the wall, the fluctuating heat flux q′w reduces to zero at the wall. For illustration purpose, in addition to case I, we also consider case II, which is a plane channel heated only from one wall but cooled from the other one at the same rate taking into account of the freestream scalar boundary condition at the wall θ′w≠0 with q′w=0. The distributions of the mean scalar field, root-mean-square fluctuations, turbulent heat flux, correlation coefficient, turbulent Prandtl number, and Nusselt number are examined in detail. Moreover, some insights into the flow structure of the scalar fields are provided. As a result of interest, it is found that the mean scalar field ⟨θ⟩ is not affected by the scalar fluctuations at the wall. But owing to the different boundary conditions applied at the wall, significant differences in the evolution of the rms scalar fluctuations θrms are observed in the immediate vicinity of the wall. Surprisingly, the maximum rms intensity remains almost unchanged in the near wall region whatever the type of boundary condition is applied at the wall. In addition, the turbulent heat fluxes that play a major role in heat transfer are found to be independent of the wall scalar fluctuations. This study demonstrates that the impact of the wall scalar fluctuations is appreciable mainly in the near wall region. This outcome must be taken into account when simulating industrial flows with thermal boundary conditions involving different fluid/solid combinations.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference27 articles.

1. Simulations of Channel Flows With Effects of Spanwise Rotation or Wall Injection Using a Reynolds Stress Model;ASME J. Fluids Eng.,2000

2. Second-Moment and Scalar Flux Representation in Engineering and Geophysical Flows;Fluid Dyn. Res.,2009

3. Towards the Development of a Reynolds-Averaged Algebraic Turbulent Scalar-Flux Model;Int. J. Heat Fluid Flow,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3