Jump Phenomena, Bifurcations, and Chaos in a Pressure Loaded Spherical Cap Under Harmonic Excitation

Author:

Gonc¸alves Paulo Batista1

Affiliation:

1. Department of Civil Engineering, Pontifical Catholic University, 22453-900 Rio de Janeiro, Brazil

Abstract

This paper investigates the dynamic non-linear behaviour of a pre-loaded shallow spherical shell under a harmonic excitation. For this, the Marguerre partial differential equations of motion for an imperfect, pre-loaded cap is reduced to a finite degree of freedom system using the Galerkin method. The displacements and stress functions are described by a linear combination of Bessel functions and modified Bessel functions that satisfy all the relevant boundary and continuity conditions. The resulting differential equations of motion are solved by the Galerkin-Urabe procedure, or, alternatively, by numerical integration. To study the response of the shallow cap under harmonic excitation, phase plane portraits, Poincare´ maps, resonance curves, and bifurcation diagrams are plotted for a number of loading conditions. Results indicate that, for static load levels between the upper and lower limit point loads, the shell may display jumps due to the presence of competing potential wells and the presence of non-linear resonance curves within each well. Additionally, different physical situations are identified in which period-doubling phenomena and chaos can be observed.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3