Wave-Packet Models for Jet Dynamics and Sound Radiation

Author:

Cavalieri André V. G.1,Jordan Peter2,Lesshafft Lutz3

Affiliation:

1. Divisão de Engenharia Aeroespacial, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP 12228-900, Brazil e-mail:

2. Chargé de Recherche, Institut Pprime, Dép. Fluides, Thermique, Combustion, CNRS—Université de Poitiers—ENSMA, Poitiers 86000, France e-mail:

3. Chargé de Recherche, Laboratoire d'Hydrodynamique (LadHyX), CNRS—École Polytechnique, Palaiseau 91120, France e-mail:

Abstract

Organized structures in turbulent jets can be modeled as wavepackets. These are characterized by spatial amplification and decay, both of which are related to stability mechanisms, and they are coherent over several jet diameters, thereby constituting a noncompact acoustic source that produces a distinctive directivity in the acoustic field. In this review, we use simplified model problems to discuss the salient features of turbulent-jet wavepackets and their modeling frameworks. Two classes of model are considered. The first, that we refer to as kinematic, is based on Lighthill's acoustic analogy, and allows an evaluation of the radiation properties of sound-source functions postulated following observation of jets. The second, referred to as dynamic, is based on the linearized, inhomogeneous Ginzburg–Landau equation, which we use as a surrogate for the linearized, inhomogeneous Navier–Stokes system. Both models are elaborated in the framework of resolvent analysis, which allows the dynamics to be viewed in terms of an input–ouput system, the input being either sound-source or nonlinear forcing term, and the output, correspondingly, either farfield acoustic pressure fluctuations or nearfield flow fluctuations. Emphasis is placed on the extension of resolvent analysis to stochastic systems, which allows for the treatment of wavepacket jitter, a feature known to be relevant for subsonic jet noise. Despite the simplicity of the models, they are found to qualitatively reproduce many of the features of turbulent jets observed in experiment and simulation. Sample scripts are provided and allow calculation of most of the presented results.

Funder

Horizon 2020 Framework Programme

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3