Reducibility and Analysis of Linear Quasi-Periodic Systems Via Normal Forms

Author:

Waswa Peter M. B.1,Redkar Sangram2

Affiliation:

1. Guidance, Navigation and Control Systems, Maxar Technologies, Palo Alto, CA 94303

2. The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ 85212

Abstract

Abstract This article introduces a technique to accomplish reducibility of linear quasi-periodic systems into constant-coefficient linear systems. This is consistent with congruous proofs common in literature. Our methodology is based on Lyapunov–Floquet transformation, normal forms, and enabled by an intuitive state augmentation technique that annihilates the periodicity in a system. Unlike common approaches, the presented approach does not employ perturbation or averaging techniques and does not require a periodic system to be approximated from the quasi-periodic system. By considering the undamped and damped linear quasi-periodic Hill-Mathieu equation, we validate the accuracy of our approach by comparing the time-history behavior of the reduced linear constant-coefficient system with the numerically integrated results of the initial quasi-periodic system. The two outcomes are shown to be in exact agreement. Consequently, the approach presented here is demonstrated to be accurate and reliable. Moreover, we employ Floquet theory as part of our analysis to scrutinize the stability and bifurcation properties of the undamped and damped linear quasi-periodic system.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference30 articles.

1. Nonlinear Rolling Motions of Ships in Longitudinal Waves;Int. Shipbuild. Prog.,1990

2. A Quasiperiodic Mathieu-Hill Equation;SIAM J. Appl. Math.,1980

3. Transition Curves for the Quasi-Periodic Mathieu Equation;SIAM J. Appl. Math.,1998

4. Sur Les Équations Différentielles Linéaires á Coefficients Périodiques;Ann. Sci. L'École Norm. Supér.,1883

5. The Rotation Number for Almost Periodic Potentials;Commun. Math. Phys.,1982

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Order Reduction of Nonlinear Quasi-Periodic Systems Using Lyapunov–Perron Transformation;Journal of Computational and Nonlinear Dynamics;2022-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3