Hydrodynamic Cause Analysis for Roof Damage on Water Storage Tank

Author:

Ryu Ki-Wahn1

Affiliation:

1. Department of Aerospace Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeollabuk-do 54896, South Korea

Abstract

Abstract The causes of roof damage found on a large-scale water storage tank were investigated using hydrodynamic analysis. All operation and weather data, such as temperature inside and outside of the storage tank, atmospheric pressure, water level according to time, condensed water check inside pipelines, snowfall, and wind speed, were precisely reviewed. Four potential scenarios were postulated to estimate the vacuum pressure, presumed to be a direct cause of the roof damage to the storage tank. In the scenarios, an energy equation with a friction loss for pipelines and fittings was adopted to compute the pressure differences between the inlet and outlet of the ventilation and overflow pipes. A timewise pressure drop for the condition of fully clogged connected lines during a discharge operation was also carried out. A sequence solution for the unsteady Bernoulli equation to represent the dynamic motion of a water column inside a loop seal was successfully derived. This can predict the vacuum pressure limit inside the storage tank required to drain out the water from the loop seal. The predicted vacuum pressure was compared with the vacuum pressure required to cause the buckling phenomena at the roof support structures. In-depth analysis of each scenario showed that the roof damage of the storage tank developed when the vacuum pressure reached over the estimated vacuum pressure limit. To prevent further roof damage, including the storage tank of the same design at other plant, change of the layout of the air ventilation line was recommended.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference12 articles.

1. A Study of Storage Tank Accidents;J. Loss Prev. Process Ind.,2006

2. Buckling of Vertical Oil Storage Steel Tanks: Review of Static Buckling Studies;Thin-Walled Struct.,2016

3. Prediction of Vacuum-Induced Buckling Pressures of Thin-Walled Cylinders;Thin-Walled Struct.,2012

4. Analysis of the Damage Source for the Roof of the Raw Water Storage Tank at Ilsan Combined Cycle Powerplant (Korean),1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3