Including Preference in Anthropometry-Driven Models for Design

Author:

Garneau Christopher J.1,Parkinson Matthew B.2

Affiliation:

1. Pennsylvania State University, University Park, PA 16802

2. Department of Mechanical Engineering, Engineering Design Program, Pennsylvania State University, University Park, PA 16802

Abstract

In the design of artifacts that interact with people, the spatial dimensions of the target user population are often used to determine the requirements of the engineered artifact. The expected variability in body dimensions (called “anthropometry”) is used to indicate how much adjustability or how many sizes are required to accommodate the intended user population. However, the quantification of anthropometric variability alone is not sufficient to make these kinds of assessments in many situations. For example, two vehicle drivers with similar body dimensions might have different preferred locations for the seat. In these situations, preference can be broken down into two components: that explained by body size and the variability that remains. By quantifying the magnitude of both sources, preference can be included in modeling strategies and design decision-making. This improves the accuracy of models and predictions, and can facilitate the application of design automation tools such as optimization and robust design methodologies, resulting in products that are safer, cost effective, and more accessible to broader populations (including people with disabilities). In contrast, failure to include variability in preference that is not attributable to anthropometry can produce misleading results that under- or over-approximate accommodation and prescribe inappropriate amounts of adjustability. A simulation-based approach for modeling both sources of variability and conducting designing for human variability (DfHV) assessments is presented. A stochastic component based on the residual variance in regression analysis relating body dimensions to experimental data is included in the predictive model. This ensures that a distribution of preferred configurations is produced for any given set of body dimensions. The effect of including both components of preference is quantified by comparing this approach to two traditional DfHV approaches in the context of a simple, univariate case study to determine the appropriate allocation of adjustability to achieve a desired accommodation level.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference30 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3