Improvements in Shear Locking and Spurious Zero Energy Modes Using Chebyshev Finite Element Method

Author:

Dang-Trung H.1,Yang Dane-Jong2,Liu Y. C.3

Affiliation:

1. Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; Department of Mathematics, University of Bergen, Bergen 5020, Norway e-mails: ;

2. Department of Mechanical and Computer-Aided Engineering, Feng Chia University, No. 100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan e-mail:

3. Bachelor's Program in Precision System Design, Feng Chia University, No. 100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan e-mail:

Abstract

In this paper, the authors present Chebyshev finite element (CFE) method for the analysis of Reissner–Mindlin (RM) plates and shells. Chebyshev polynomials are a sequence of orthogonal polynomials that are defined recursively. The values of the polynomials belong to the interval [−1,1] and vanish at the Gauss points (GPs). Therefore, high-order shape functions, which satisfy the interpolation condition at the points, can be performed with Chebyshev polynomials. Full gauss quadrature rule was used for stiffness matrix, mass matrix and load vector calculations. Static and free vibration analyses of thick and thin plates and shells of different shapes subjected to different boundary conditions were conducted. Both regular and irregular meshes were considered. The results showed that by increasing the order of the shape functions, CFE automatically overcomes shear locking without the formation of spurious zero energy modes. Moreover, the results of CFE are in close agreement with the exact solutions even for coarse and irregular meshes.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3