The Mean Flow Structure Around and Within a Turbulent Junction or Horseshoe Vortex—Part I: The Upstream and Surrounding Three-Dimensional Boundary Layer

Author:

Menna J. D.1,Pierce F. J.2

Affiliation:

1. E.I. DuPont Company at Savannah River, Aiken, SC 29808-0001

2. Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Abstract

The mean flow structure upstream, around, and in a turbulent junction or horseshoe vortex is reported for an incompressible, subsonic flow. This fully documented, unified, comprehensive, and self-consistent data base is offered as a benchmark or standard case for assessing the predictive capabilities of computational codes developed to predict this kind of complex flow. Part I of these papers defines the total flow being documented. The upstream and surrounding three-dimensional turbulent boundary layer-like flow away from separation has been documented with mean velocity field and turbulent kinetic energy field measurements made with hot film anemometry, and local wall shear stress measurements. Data are provided for an initial condition plane well upstream of the junction vortex flow to initiate a boundary layer calculation, and freestream or edge velocity, as well as floor static pressure, are reported to proceed with the solution. Part II of these papers covers the flow through separation and within the junction vortex flow.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological investigation of junction flow between cylinder and flat plate;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-07-14

2. Flow dynamics past a simplified wing body junction;Physics of Fluids;2010-11

3. Experimental study of interference drag for multi-element objects;Experimental Thermal and Fluid Science;2002-06

4. A study of boundary layer-wake interaction in shallow open channel flows;Experiments in Fluids;2001-05-07

5. Complex Effects in Turbulent Flows;Turbulent Flows;1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3