Characterization of Die Stresses in Plastic Packages Subjected to Moisture and Thermal Exposures

Author:

Nguyen Quang1,Rahim M. Kaysar1,Roberts Jordan C.1,Suhling Jeffrey C.1,Jaeger Richard C.1

Affiliation:

1. Auburn University, Auburn, AL

Abstract

Stress sensing test chips are a powerful tool for measuring in-situ stresses in electronic packages. In this study, we have applied (111) silicon test chips to perform a variety of measurements of die stresses in plastic packages. In particular, stresses were characterized in 240 pin Quad Flat Packs (QFPs) subjected to various thermal and moisture loadings. The utilized 10 × 10 mm sensor chips incorporated optimized eight-element piezoresistive rosettes that were capable of measuring the complete state of stress at the die surface (including the interfacial shear stresses). The fabricated test chips were initially used to measure die stresses in the QFPs after molding and post mold bake. Measurement results were correlated with finite element simulations of the molding process. Subsequently, the effects of thermal cycling on the measured die stress distributions for selected packages were investigated. After these initial measurements, the samples were stored at room temperature and ambient humidity for 17 years. The samples were then re-measured after this long term storage to evaluate the degree of die stress relaxation that had occurred. Several packages were then exposed to a harsh high temperature and high humidity environment (85 C, 85% RH) for various time durations, and allowed to absorb moisture. The die stresses at several locations were characterized as a function of time during the hygrothermal exposure. The weight variations in each sample were also measured during the 85/85 exposure to gauge the moisture uptake, and reversibility tests were conducted to see whether the effects of moisture uptake were permanent. Using these measurements and numerical simulations, valuable insight has been gained on moisture induced failure phenomena in plastic packages. Good agreement was found between the predicted and measured die normal stress distributions occurring after molding of the QFP. The magnitudes of the in-plane normal and shear stresses were found to have decreased by up to 30% after moderate levels of thermal cycling. After long term storage, the experimental measurements showed that the die normal stresses in the QFPs relaxed significantly (up to 40%), while the die shear stresses exhibited only small variations. In addition, the 85/85 hygrothermal exposures had strong effects, generating tensile die normal stress changes of up to 130 MPa. Upon fully redrying in reversibility tests, it was observed that the moisture-induced normal stress changes were not recovered. Good correlations were observed between the variations of sample weight (increases in moisture content) and the variations of the die normal and shear stress changes.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Optimal Resistance Measurement Method for Precision Resistor Stress Response Analysis;2024 47th MIPRO ICT and Electronics Convention (MIPRO);2024-05-20

2. Analysis and Compensation of Stress Effects on CMOS Reference Current Sources;2023 Austrochip Workshop on Microelectronics (Austrochip);2023-09-20

3. Stress-Dependent MOSFET Model for Use in Circuit Simulations;2023 46th MIPRO ICT and Electronics Convention (MIPRO);2023-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3